skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cummins, Breschine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Early development of Drosophila melanogaster (fruit fly) facilitated by the gap gene network has been shown to be incredibly robust, and the same patterns emerge even when the process is seriously disrupted. We investigate this robustness using a previously developed computational framework called DSGRN (Dynamic Signatures Generated by Regulatory Networks). Our mathematical innovations include the conceptual extension of this established modeling technique to enable modeling of spatially monotone environmental effects, as well as the development of a collection of graph theoretic robustness scores for network models. This allows us to rank order the robustness of network models of cellular systems where each cell contains the same genetic network topology but operates under a parameter regime that changes continuously from cell to cell. We demonstrate the power of this method by comparing the robustness of two previously introduced network models of gap gene expression along the anterior–posterior axis of the fruit fly embryo, both to each other and to a random sample of networks with same number of nodes and edges. We observe that there is a substantial difference in robustness scores between the two models. Our biological insight is that random network topologies are in general capable of reproducing complex patterns of expression, but that using measures of robustness to rank order networks permits a large reduction in hypothesis space for highly conserved systems such as developmental networks. 
    more » « less
  3. Abstract Mathematical modeling of the emergent dynamics of gene regulatory networks (GRN) faces a double challenge of (a) dependence of model dynamics on parameters, and (b) lack of reliable experimentally determined parameters. In this paper we compare two complementary approaches for describing GRN dynamics across unknown parameters: (1) parameter sampling and resulting ensemble statistics used by RACIPE (RAndom CIrcuit PErturbation), and (2) use of rigorous analysis of combinatorial approximation of the ODE models by DSGRN (Dynamic Signatures Generated by Regulatory Networks). We find a very good agreement between RACIPE simulation and DSGRN predictions for four different 2- and 3-node networks typically observed in cellular decision making. This observation is remarkable since the DSGRN approach assumes that the Hill coefficients of the models are very high while RACIPE assumes the values in the range 1-6. Thus DSGRN parameter domains, explicitly defined by inequalities between systems parameters, are highly predictive of ODE model dynamics within a biologically reasonable range of parameters. 
    more » « less
  4. Csikász-Nagy, Attila (Ed.)
    Large programs of dynamic gene expression, like cell cyles and circadian rhythms, are controlled by a relatively small “core” network of transcription factors and post-translational modifiers, working in concerted mutual regulation. Recent work suggests that system-independent, quantitative features of the dynamics of gene expression can be used to identify core regulators. We introduce an approach of iterative network hypothesis reduction from time-series data in which increasingly complex features of the dynamic expression of individual, pairs, and entire collections of genes are used to infer functional network models that can produce the observed transcriptional program. The culmination of our work is a computational pipeline, I terative N etwork H ypoth e sis Re ductio n from T emporal Dynamics (Inherent dynamics pipeline), that provides a priority listing of targets for genetic perturbation to experimentally infer network structure. We demonstrate the capability of this integrated computational pipeline on synthetic and yeast cell-cycle data. 
    more » « less